A Note on Invariant Differential Operators on Siegel-jacobi Space

نویسنده

  • JAE-HYUN YANG
چکیده

For two positive integers m and n, we let Hn be the Siegel upper half plane of degree n and let C be the set of all m × n complex matrices. In this article, we investigate differential operators on the Siegel-Jacobi space Hn ×C(m,n) that are invariant under the natural action of the Jacobi group Sp(n,R)⋉ H (n,m) R on Hn × C, where H R denotes the Heisenberg group.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Partial Cayley Transform of Siegel-jacobi Disk

Let Hg and Dg be the Siegel upper half plane and the generalized unit disk of degree g respectively. Let C be the Euclidean space of all h× g complex matrices. We present a partial Cayley transform of the Siegel-Jacobi disk Dg × C (h,g) onto the Siegel-Jacobi space Hg × C (h,g) which gives a partial bounded realization of Hg × C (h,g) by Dg ×C . We prove that the natural actions of the Jacobi g...

متن کامل

Differential Operators on Jacobi Forms of Several Variables

The theory of the classical Jacobi forms on H × C has been studied extensively by Eichler and Zagier[?]. Ziegler[?] developed a more general approach of Jacobi forms of higher degree. In [?] and [?], Gritsenko and Krieg studied Jacobi forms on H × Cn and showed that these kinds of Jacobi forms naturally arise in the Jacobi Fourier expansions of all kinds of automorphic forms in several variable...

متن کامل

Explicit Matrices for Hecke Operators on Siegel Modular Forms

We present an explicit set of matrices giving the action of the Hecke operators T (p), Tj(p ) on Siegel modular forms. Introduction It is well-known that the space of elliptic modular forms of weight k has a basis of simultaneous eigenforms for the Hecke operators, and the Fourier coefficients of an eigenform (and hence the eigenform) are completely determined by its eigenvalues and first Fouri...

متن کامل

2 4 A ug 2 00 6 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

2 4 Ju l 2 00 7 INVARIANT METRICS AND LAPLACIANS ON SIEGEL - JACOBI SPACE

In this paper, we compute Riemannian metrics on the Siegel-Jacobi space which are invariant under the natural action of the Jacobi group explicitly and also provide the Laplacians of these invariant metrics. These are expressed in terms of the trace form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009